NOM: Classe:

Lycée Saint-Sernin TOULOUSE ~ Mathématiques
Secondes ~ évaluation de début d'année ~ 07 sept 06 ~ 55 minutes.

~ **CORRECTION** du Questionnaire à réponse brève ~

COMMECTION	du Questionnaire à réponse preve	
Question 1	Donner les résultats	
ABC est un triangle équilatéral. Le point I est le	1- Pour le triangle ABC, K est Le centre de gravité	
milieu du segment [BC]. Le point J est le milieu		
du segment [AC]. La droite (AI) coupe la droite	2-	
(BJ) en un point K.	 Une symétrie centrale de centre Le point I 	
 Pour le triangle ABC, le point K ainsi défini 	Une symétrie axiale d'axe la droite (AI)	
porte le nom de	 Une rotation de centre K et d'angle 120° 	
2- Le point B a pour image le point C par une	-	
symétrie centrale, une symétrie axiale et une	3- L'image de la droite (AI) est la droite (BJ), car le	
rotation. Précisez chacune de ces transformations.	point A a pour image le point B et le point I a pour image	
3- L'image de la droite (AI) par la symétrie	le point J.	
axiale d'axe (CK) est		

Question 2	Donner les résultats	
ABC est un triangle quelconque. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AC]. Le point K est le milieu du	1- $\overrightarrow{JK} = \dots \overrightarrow{CI}$ ou \overrightarrow{IB}	
segment [BA]. 1- Le vecteur \overrightarrow{JK} est égal au vecteur	$2 - \overrightarrow{BI} + \overrightarrow{BK} = \dots \overrightarrow{BJ}$	
2- La somme des vecteurs \overrightarrow{BI} et \overrightarrow{BK} est le vecteur	3- M est le pointI milieu de [BC]	
3- Le point M tel que $\overrightarrow{MB} = \overrightarrow{CM}$ porte un nom sur la figure.	4- Le point N est un point quelconque du plan.(on ne	
sur la ligure. 4- Que peut-on dire d'un point N qui vérifie : $\overrightarrow{AN} + \overrightarrow{NC} = \overrightarrow{AC}$	peut rien dire de particulier) Vous avez reconnu la relation de Chasles qui est vraie pour TOUS points A, C et N	

Question 3	Cocher la	bonne ca	se			
On vous dit que le sinus d'un angle α vaut 0,5. Alors cet angle vaut	30°	45°	60°	Une autre valeur	On ne peut pas le savoir	
	X					

Question 4	Donner le résultat	
ABC est un triangle rectangle en A tel que AC = $3 \text{ et BC} = 5$. Alors $\cos \widehat{ABC} =$	$\cos \widehat{ABC} =4/5$ Le théorème de Pythagore permet de calculer d'abord AB = 4	

Question 5	Donner le résultat	
ABCD sont 4 points d'un cercle Γ de centre O et	Un axe de symétrie de cette figure est un diamètre du	
de rayon 5 cm. On suppose que ABCD est un	cercle passant par le milieu d'un des 4 côtés du rectangle.	
rectangle. Décrivez un axe de symétrie de cette	Ou bien la médiatrice d'un des 4 côtés du rectangle. Ou	
figure, à l'aide des notations de cet exercice	bien	
Question 6	Donner un résultat	
Ecrire plus simplement :		
$A = 10^3 \times 10^{-5} + \frac{1}{10^3 \times 10^{-1}}$	A = 0,02 Vous n'avez pas le droit à l'erreur !!!	
Question 7	Donner le résultat	
Ecrire sous la forme a \sqrt{b} avec a et b entiers :	G.	
$B = \sqrt{75} - \sqrt{27}$	$B = 2\sqrt{3}$ calculs très classiques	

Le PGCD de 285 et 630 est PGCD (285 ; 630) = 15 calculs très classiques	

Question 9	Donner le résultat	
Les nombres 1234567891011 et 1000000000002	Pourquoi ? La somme des chiffres de chacun de ces deux	
ont au moins un diviseur en commun. Pourquoi ?	nombres est divisible par 3 donc	
_	_	
Question 10	Donner le résultat	
Développer puis écrire plus simplement :	4(2x+3) $x=5x$	
$\frac{4}{3}(\frac{2x}{3}+3)-\frac{x}{3}$	$\frac{4}{3}(\frac{2x}{3}+3)-\frac{x}{3}=\frac{5x}{9}+4$ calculs très classiques	
$\frac{-(-3+3)3}{3}$		

Question 11	Donner les solutions	
Résoudre l'équation : $(x-2)(2x+3) = 0$	Les solutions sont : 2 et - 3/2 calculs très classiques	

Question 12	Donner la réponse	
Comment appelle-t-on une fonction associée à	Une telle fonction est une fonction linéaire (principale	
une situation de proportionnalité ?	utilisation de ces fonctions !!!)	
Question 13	Donner le résultat	
f désigne une fonction constante qui à tout nombre x fait correspondre le nombre $f(x) = 5$. Que vaut $f(2)$?	f(2) = 5 Un cas un peu particulier sur lequel vous devez méditer	

Question 14	Donner les réponses	
Voici les 5 notes des DS d'un élève :	Moyenne: 11	
7; 15; 13; 12; 8.		
Donner sa moyenne, sa note médiane, et	Médiane : 12	
l'étendue de ses notes.		
	Etendue: 8 résultats très classiques	

Question 15	Donner la réponse	
A et B sont deux points tels que $AB = 5$ cm. Sur	M est un point de (ou du) cercle de diamètre [AB]. résultat	
quel objet de la géométrie (ou sur quelle figure)	très classique	
iriez-vous chercher un point M tel que ABM soit		
rectangle en M ?		

Question 16	Donner les résultats	
Factoriser : $A = 3(2x+1)^2 - (x+3)(1+2x)$	A = 5x(2x+1)	
$B = (2x+5)^2 - 9$	B = 4(x+1)(x+4)	
	Ce type de calcul devrait être maîtrisé au sortir du	
	Collège. Entraînez-vous!	

Question 17	Donner les solutions	
Résoudre l'équation $x^2 = 2$	Les solutions sont : $\sqrt{2}$ et - $\sqrt{2}$ calculs très classiques	

Question 18	Donner le résultat	
a est un nombre positif. Donner la définition du	\sqrt{a} est le nombre POSITIF dont le carré est a.	
nombre noté \sqrt{a}	Il faut étudier précisément les définitions	

Question 19	Donner la réponse	
a, b et c sont 3 nombres tels que $a \le b$. A quelle	c est un nombre négatif. Cette situation est un peu bizarre	
condition sur c est-on sûr que $ac \ge bc$?	mais doit être facilement identifiée.	

Question 20	Donner votre proposition	
Proposer un exemple d'inéquation dont les	Une inéquation possible est : $x \ge 2$ par exemple	
solutions soient représentées en gras sur le		
schéma ci-dessous :		
0 2 4 6 8 10		